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Numerical studies of the transport behavior of a passive solute
in a two-dimensional incompressible random flow field
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We study the transport behavior of a passive scalar in a two-dimeng@Dpatime-independent Gaussian
random velocity field by efficient and highly accurate numerical simulations. The model under consideration
has been used in order to gain basic understanding of transport processes in incompressible flow through
heterogeneous porous media. The velocity field is derived from the linearized solution of the Darcy equation
with a Gauss-distributed log-hydraulic conductivity. The transport of a passive scalar is studied by a high
precision random-walk method, which allows for a systematic nonperturbative study of the ensemble and
effective dispersion coefficients. The conclusive numerical results validate the range of applicability of the
perturbation theory and the consistency of nonperturbative approaches to the transport problem in a random
medium. Furthermore, we observe closed streamlines in incompressible 2D Gaussian random fields, which
restricts the direct applicability of the simulation method for transport in heterogeneous porous media, and
guestions the results of similar studies that do not observe this phenomenon.
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[. INTRODUCTION which yield conceptually different dispersion quantities. The
ensemble average over the dispersion coefficient in one real-
The two-dimensional numerical simulations presented irization of the random field defines the “effective” dispersion
this paper investigate the transport of a passive scalar in 3<Ebeff|0|entDe“(t) which is a measure for the spreading in
IncompI’ESSIb|e static random Ve|OCIty field. The Ve|0C|tyone typ|ca| rea“za“on The “ensemble” d|spers|on coeffi-
field, as an approximation to the flow field in a heteroge- C|entDe”5(t) derived from the second centered moment of
neous porous medium, is given by the linearized solution ofye onsemble averaged concentration distribution, in con-

t(;le Dardc_y gguat(ljorlﬁl] hWS'ChI!S a Ilrgiear_ fgnctlfor;]al of tdhe trast, reflects the dispersion properties of the ensemble of all
auss-distributed log-hydraulic conductivity of the medium o i ations. The conceptual difference between these two

f’i”d’ﬂas a codnsier?uegce, IS Ga(;1§s dlsétnbuted, :jOO.bTh_IS Gaussiantities has been known in the context of turbulent trans-
lan flow modet | aﬁ een used in order to St;é asic tr"’msﬁort[l&lq as well as transport in time-independent random
pog pr:opertles 'ml ;teroggneou_?hporous mé b] r']n two ¢ fields[20], and was investigated quantitatively in the frame-
an t ree spat_la dimensions. 1nhe transport ehavior of @qrk of a second-order perturbation expansion in the fluc-
passive scalar in similar flow models has been investigate uations of the random fields in Ref§l6,21,22. There it
€.g., as a static "”."“”9 case in turbulent trans;_{ﬁr%ll], was found that the temporal behaworm‘fﬁ(t) is dominated
also as an approximation for solute transport in heteroge By the di | 12/D. h h h
neous porous media, and in general for the study of rando y the dispersion time scalep= which measures the
rR/pmal time for the solute to be spread over a distance of one
walks in random environmen{sd2-17. In contrast to the
. ) . ; correlation length of the flow field by local dispersioD.
models investigated in Refg8-11,14,15,1} which assume The ensemble dispersion ffici Eﬁf”s(t in contrast,
a zero mean velocity, for the modeling of transport in a het- € ensemble dispersion coetlicie ). contras
erogeneous porous medium as, €.g., a groundwater aquif@volves on the advection time scatg=I/u, which repre-
the mean velocity is necessarily nonzero, which leads to &ents the typical time for the solute to be transported over
qualitatively and quantitatively different transport behaviorone correlation length of the random field by the mean drift
[12]. u. Both time scales are well separated in realistic situations,
As the simplest characteristic of the spatial shape of the, <7y [1]. Thus, the largest times reached in the transport
concentration distribution, we study the temporal evolutionsimulations have to be at least of the order of tlEge
of the macroscopic dispersion coefficients, which are definedispersion time scale to be able to obtain meaningful results
as averages over all typical realizations of the underlyingor the effective dispersion coefficients.
random field. We distinguish two averaging procedures The perturbative approadi3,23,24 to solve the trans-
port problem has proved to be a valuable tool for the ana-
lytical prediction and description of macroscale transport
*Electronic address: marco.dentz@upc.es properties in heterogeneous media. It is, however, intrinsi-
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cally restricted to situations of moderate heterogeneity. Theoefficient. For finite local dispersion, the transport in the 2D
efficient numerical simulations presented here are a systenfsaussian random field is normal in the long-time limit for
atic tool to investigate the relevance of higher-order contrithe correlation function used in this study, which follows
butions of the perturbation series to the transport problem foffom the work of Ref.[39], see Ref[40]. In a flow field,
strongly fluctuating random fields. The numerical results aravhich solves the 2D Darcy equation for a scalar conductivity
compared to a self-consistent resummation scheme, which fi€ld, there cannot occur closed streamlines. Thus, the simu-
the literature is referred to as direct interaction approximalation method using 2D Gaussian random fields is of limited
tion [8,10,14, Corrsin’s conjectur§25-27, and fastest ap- applicability to transport in heterogeneous porous me_d|a, a
parent convergenck28]. In the following we will refer to ~ fact that has, to our knowledge, not been reported in the
this scheme as “Corrsin’s conjecturéCC). In terms of a I|§er_ature befqre. This ob_servatl_on questlons_the results of
diagrammatic representation of the perturbation seriesSimilar numerical 2D studies, which do not notice these phe-
Corrsin’s conjecture is a self-consistent one-loop resumma?omena in the limit of small or vanishing local dispersion.
tion scheme, which does not account for cross diagrams. As

indicated by the studies of Refgl0,8], for the case of zero Il. MODEL

mean velocity the prediction of CC agrees very well with
Monte Carlo simulationf14]. In the case of a nonzero mean
drift, the situation is different. Ird=3 spatial dimensions, The distributiong(x,t) of passive solute in a static incom-
the predictions of CC deviate from the results of numericalpressible random field(x) is described by a Fokker-Planck
random-walk simulation§2] and describe the simulated be- equation:

havior only qualitatively, which can be traced back to the 5

systematic neglection of cross diagrams. In contrast to the v . _

second-order perturbation theory, CC predictdin2 and atg(x,t)+u Vo(x)=DAg(x.b)

d=3 a transverse macrodispersion coefficient of “macro-
scopic” order of magnitudgi.e., it is finite in the limit of
\éir;f;'gg(f?e' chroesxcp?eprli?nlgﬁtaélilS;ﬁeészgﬂ],[fr?igzr;,zugltaiz Fc)::)er;- where we divided the stationary random field into its mean

firmed qualitatively by numerical simulatiori€]. In d=2  value and fluctuations about ii(x) =u—u’(x); the overbar

there is strong evidence that the transverse dispersion coedenotes the ensemble average. In the following, we assume
ficient is of the order of thémicroscopig local dispersion  to be aligned with the one direction of the coordinate system,
[29,30. The systematic numerical simulations presented iru;=ug;,. Furthermore, we assume an isotropic, constant lo-
this paper shed some new light on the range of validity of thecal dispersion, which is denoted by the coefficiEntThe
perturbation series and the consistency of C@#2 dimen- initial condition is given byg(x,t=0)=&(x); as boundary
sions. condition we assume a vanishiggx,t) at infinity.

For the 2D numerical studies presented in this paper we Equation(1) can be transformed into an equivalent inte-
use the simulation method described in R&f. The random  gral equation, which reads in Fourier space as
velocity field is generated as a superposition of a large num-
ber of randomly chosen harmonic mod8s10,11. The flow ~ ~ : e N
field generated in this way is defined continuously in every ~ 9(K:D=0o(k,t)=ik- fk, fﬁxdt ok, t=t)u"(k’)
point in space. For the solution of the transport problem, we
use the random-walk method as described in IR&. This Xg(k—k’ t—t"). 2)
method allows for efficient transport simulations combining
(essential long observation times with a large number of Fourier transformed quantities are denoted by a tilde, the
disorder realizations. Many numerical simulations docu-wave vector is denoted byk; the abbreviationf,; - - -
mented in the literature, which are based on the(fulimeri- = [ .>dk’/(2#7)%--. The unperturbed propagator is given

cal) or the approximate linearized solution of the Darcy by ao(k,t)=®(t)exp(—Dk2t+iJ<1t), with ©(t) the Heavi-
equation, are limited to small observation times of only a fewgjqe step function.

advection time scales and few disorder realizati@is-34, The effective and ensemble dispersion coefficients now
or additionally restricted to zero local dispersion, i.e., purelyCan be defined in terms @k t):
advective transporf6,35—-37. These studies cannot give e

A. Transport

=48(x)8(t)+u'(x)- Vg(x,t), ()

conclusive answers to the questions posed above. 2
In 2D Gaussian random velocity fields one finds closed Dﬁﬁ(t)=—1/2— {Ing(k,H}|x—0. ®)
streamlineg38], a phenomenon which was observed in Ref. Jt dkidk;
[10] in a Gaussian model with zero mean velocity. Closed 5
streamlines affect the transport behavior dramatically in the ens i J ~
case of small or zero locé&microscopi¢ dispersion. For zero Dij 1) llz&t ki dK; In{g(k.t}lk-o. @)

mean drift and zero local dispersion, REf0] observed sub-

diffusion due to particle localization in closed streamlines.respectively. The conceptual and quantitative difference be-
Here, for a finite mean drift and zero local dispersion, wetween these two dispersion quantities has been discussed ex-
observe a linear growth of the longitudinal macrodispersiortensively in Refs[21,22 in the framework of second-order
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perturbation theory. By iteration of E¢R) one can generate For the simulations, the number of realizations of the ran-
a perturbation series iﬁf(k), which is the basis for their dom fieldu(x) varies between 2000 for the investigation of
studies. the asymptotic behavior and 2500 for the temporal behavior;
By using the translational invariance of the random fieldthe number of white noise realizations varies between 100
u(x), one can derive from Ed2) the following relation for ~and 150. The time discretizations wefer=0.05 andA 7

ity i . =0.1, where we defined the dimensionless timet/ 7.
the ensemble averaged distributig(k, t) [40) For illustration, we express the definitiof®) and(4) of

— % o 5 the effective and ensemble dispersion coefficients in terms of
g(k,t)=go(k,t)—fk/ Jk”f dt’f dt"go(k,t")go(k the particle positiorx(t):
—k’ " =t") - ki{u/ (k") u] (K)g(k—K",t")}k; DM(t)= 1/2 HAOX(0) = iO)xi(D)}, (D)
©)

where we sum over repeated indices. From this representa-  penyt)= 1/2—{(X (Oxi(1)) = (xi(1)) (xi(1)}. (8
tion follows directly that the center of mass velocity

—_— Note that the order by which the two ensemble averages are
(K, t)[k=0= U5|1 taken is relevant. The angular brackets denote the average

over the white noisé&(t), which generates the local disper-
The CC now assumes that in E@) for large times(i) all  Sion, the overbar stands for the average over the ensemble of
direct correlations betwean (k) andg(k,t) vanish, andii) all possible realizations of the random fl(f?w f'e‘d’ézf In the

following we will employ the notatiorD|"(t)=D7;(t) and
g(k,t) can be approximated by a Gaussian which is characDeﬁ(t) De (t) i>1, and analogously for the ensemble
terized by the center of mass velocity and D®"{t). By quantity.
using definition(4), this yields a system of self-consistent

nonlinear equation$40,2,26,27 for the asymptotic long-

time values of the ensemble dispersion coefficieDt$ ) o
=lim,_ _DEt), i=1,... d. The off-diagonal elements of Fluid flow through a heterogeneous porous medium is de-

scribed by the Darcy equatidd3]
the macrodlspersmn tensor vanish for symmetry reasons. The

results of the perturbation theory, presented in Appendix A, u(x)=—exp{f(x)}V h(x), (9
and CC are compared to random-walk simulations.

The Langevin equation that is associated to the Fokkemwhereh(x) is the hydraulic head,(x) the log-hydraulic con-
Planck equatioril) and describes the motion of one particle ductivity, which is modeled as a translational invariant

Jd
eff -
U O=—17 akg

B. Velocity field

is given by[17,41,42 Gaussian random field;(x)_is split into its mean value and
d fluctuations about itf (x) = f — f’(x). The linearized solution
()= of Eq. (9) is a linear functional of " [1]:
GX(D=u)+ &), (6)

where &(t) represents a two-dimensional Gaussian white Ui(X)=Udi;— fexp(—l k-x)pi()f'(k), (10

noise defined by(&(t))=0 and (&(t)§;(t"))=2Dd;;a(t
—1"). The angular brackets denote the average over all white Rihere thep; (k) =8, — kyki /k? assure the incompressibility

noise realizations.
For advection-dominated transport situations, i.e., forof the flow field. The autocorrelation function of the so de-

— ) ) fined velocity field reads in Fourier space as
large Pelet numbers Peul/D>1 (I being a typical hetero-
geneity length scale, which in the following is identified with
the correlation length of the random figldhe transport-
dominating influence of the spatially heterogeneous flow
field can be captured only by accurate numerical solutions of fihere we used the fact that the autocorrelation function
the single-particle path line$2]. We use the extended ————
Runge-Kutta method given in R4B] (“extended” because T (K)T'(k’)=Cs(k)(2m)?5(k+k’). Here, we choose for
it accounts also for local dispersipimstead of the common the C¢¢(k) a Gauss-shaped function,
Euler method which follows from a straightforward time dis-
cretization of Eq(6). The accuracy of the extended Runge-
Kutta scheme used here for the calculation of the particle
path lines is of the ordeAt®? whereas the Euler method
provides an accuracy of ordart2 only. For completeness, with the correlation length and the variances?. In the
we give a short description of the used algorithm in Appen-iterature, one finds frequently an alternative autocorrelation
dix A. model(e.g., Refs[12,15,17,10):

Di’(k>i,-’<k'>=iz(2w>25<k+k')pi<k>p,~(k>cﬁ<k>.( )
11

2|2

Ci(K)=0?(27l 2)exp( - (12)
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+ 20 The so generated random flow field is Gaussian in the

limit of an infinite number of random modebl—~. In d

=2 spatial dimensions there is a finite probability for closed
15 streamlines in Gaussian random flows as is derived in Ap-

pendix B and Ref[40]. This phenomenon has already been

observed by Kraichnafil0], who investigated the transport
10 X behavior for the correlation mode(13) with C, (k)

= 0?(2m)9212"92exp(~k4%/2) for D=0 andu=0. He ob-
served subdiffusive behavior for the ensemble dispersion co-

5 efficients owing to the fact that all particles were trapped

within closed streamlines. Here, one observes subdiffusive
behavior only forD§"{t) as illustrated in Fig. @). Owing to

the finite drift, u#0, here one sees closed as well as open
streamlines, which is illustrated in Fig. 1. Figure 1 shows a
typical realization of the random velocity field4) for N

FIG. 1. Streamlines of a typical realization of the random veloc-=64 random modes withr,=I/u=1d and o?=1. Thus,
ity field (14) for N=64 random modes for,=I/u=1d and o2 particles can be trapped within closed streamlines and ad-
=1, x, andx, are given in units of the correlation length vected freely along open streamlines. This topological prop-
erty leads to a linear growth of the longitudinal dispersion
K.k coefficient with time, which is illustrated in Fig(ld). A phe-
8ij— '—2') Cuu(k), nomenological model that explains this linear growth on the
k basis of the existence of closed streamlines is presented in
(13 Appendix C. Until now this behavior has not been observed
, . in similar transport simulations, most probably due to nu-
with varying Cy(k). _ _merical integration error, which mimics a local dispersion.
One re_:ahzatlon of the Gau55|_an rand(_)m vel_ocny fieldThese trapping phenomena are observed in every truly
characterized by the autocorrelation functidirl) with Eq.  Gayssian flow field, as is shown in Appendix B. Thus, the
(12 is numenca]ly generated as a superposition of randomlyacits of numerical studies using EA.0), which do not
chosen harmonic mod¢8,10,11: observe these trapping phenomena in the limiting dase
5 N =0, are questionable.
i i - - For D#0, the transport behavior is normal in the long-
Ui(x)=udiy~ou \[szl pi(k?)cogk® - x+ ). time limit [39] and DE"{t) converges to a finite constant
(14 because the local dispersion causes an exchange of particles
_ _ between closed and open streamlines
The vectork) and the phaseg!!) are independent random  In passing, let us also comment on another subtle point
numbers. Their distributions determine the autocorrelatiomelated to the way the Gaussian random flow field is gener-
function of the resulting random field(x). The wave vec- ated. The velocity field given by E@l4) as a superposition
torsk) are drawn from a two-dimensional Gaussian distri-of N randomly chosen harmonic modes is Gaussian only in
bution with vanishing average and varianc1The phases the limit N—c. For a finite number of random modey,
o) are equally distributed in the intervpd,2r]. Here we <o, the number of closed streamlines vanishes for a certain
usedN =64 and convinced ourselves that a larger number ofsmal) variances?. However, this numerical artifact disap-

U/ (k)uj (k")=(2m)?8(k+k’)

modes does not change the given results. pears in the limit ofN—oo.
0.15 f ' ' ' ]
(a) 150 ®)
+
H+
%;QF‘ %d_] 100
50
+ "'.|
+ + o O . ) ‘ )
0 1000 2000 3000 4000 5000
T T

FIG. 2. Simulated behavior ¢&) D$"and(b) D" versus nondimensional time=t/7, for Pe=%, ¢?=1. The data points are given by
(+), the solid line in(a) shows the second-order perturbation theory, the solid lin®)inlenotes a linear fit to the data.

046306-4



NUMERICAL STUDIES OF THE TRANSPORT BEHAVIOR . .. PHYSICAL REVIEW B7, 046306 (2003

104 3 T T M x} T T
(@ i (b)
xx% XXX ++++
X
A 103 + XX ++T+* 1
5 e M
© = +  AAAALALAL 8660666669
Q 2 AA4KAA ol
107 ¢ o0
R
"’E 1
=
-
52 10
0 .
10
10° 10! 10 10°

FIG. 3. Simulated temporal behavior f) D" andD™and(b) D& andDS"for o?=1; (X) and (+) denote the respective data for
Pe=10°, (©) and (A) for Pe=1C?. The solid lines are the corresponding expressions from second-order perturbation theory.

For the full solution of the Darcy equation there exist notjvely by the perturbation theory. THe"™, however, reaches
closed streamlines as is shown in Appendix D. This observai-[s asymptotic |0ng-time value much later than the corre-
tion indicates a limitation of the applicability of the flow sponding second-order expressions. The observed temporal
model (10) to transport in 2D heterogeneous porous medigevolution of the observables can be explained by the influ-
and makes it inapplicable in the caBe=0. Nevertheless, ence of the complicated streamline structure, which is more
the use of a Gaussian random velocity provides basic insighimportant for large Pelet numbers, i.e., advection-dominated
into analytical and semianalytical methods to solve for transtransport situations. The unexpected strong increase of the
port in a spatially varying velocity field. Note, for example, dispersion coefficients in the intermediate time regime can
that the behavior oDS™ illustrated in Fig. 2a) contradicts ~be traced back to trapping phenomena related to the closed
CC, which predicts ird=2 andd=3 a finite value for the streamlines within the Gaussian velocity figlti4). These
asymptotic transverse dispersion. The simulations confirfR€nomena are not accounted for by lowest-order perturba-
the perturbation theor{29] and an exact resul80] obtained ~ ton theory. Closed streamlines define stagnation zones,
in the limit D=0. Furthermore, it is interesting to note that where particles may be trapped, in contrast to regions of fast

: : . . particle transport along open streamlines. Local dispersion
second-order perturbation theory describes the simulatioR2 - ; .
data surprisingFI)y well for a relativ)(/ely “high” variance?. provides an exchange mechanism for particles between these

immobile zones and mobile regions of fast transport. The
smaller the local dispersion coefficient, i.e., the larger the
Ill. RESULTS Peclet number, the larger is the mean trapping time for the
particles. This effect obviously enhances the longitudinal dis-

The stochastic approach is meaningful only for timesPersion, and leads to the strong increaseDgf and Df"
large compared to the advection time scald2]. Thus, we Observed in Fig. &.
focus on transport times> 7,,. The time in the following is In Fig. 3(b), we see the time behavior of the transverse
measured in units of the advection time scatet/r,. Thus,  dispersion coefficients. THBT™agree well with the second-
in terms of the nondimensional time the intermediate time ~ order expressions for Rel(? and Pe=10°. TheD$" in con-
regime is given by ¥7<Pe, the long-time regime by  trast is underestimated by the perturbation theory in the in-
>Pe because Rery /7, . For small variances the simulation termediate time regime,<7<Pe. For long timesD-erff and
results, which are not shown here, confirm the temporal beb{" converge to the same asymptotic value, which is of the
havior predicted by the second-order perturbation theory fobrder of the local dispersion coefficient in contrastite 3,
the longitudinal and transverse dispersion coefficients.  for which a macroscopic disorder-induced contribution was
Figures 3a) and 3b) illustrate the simulated temporal be- found [2]. The simulated long-time behavior confirms the
havior of the longitudinal and transverse effective and ensecond-order perturbation theory, which predicts that there is
semble dispersion coefficients for’=1 and Pe10° and no macroscopic contribution to the asymptotic long-time
Pe=10° compared to the corresponding second-order pertutvalue of the transverse dispersion coefficient. It is a remark-
bation theory results, see Appendix A. The simulated tempoable fact that the temporal behavior of the ensemble disper-
ral behavior of D" and D™, Fig. 3a), is quantitatively  sion coefficient is well described by the second-order pertur-
different from the behavior predicted by the perturbationbation theory expression even for a relatively larfe
theory, which underestimates the observed values. In the in- Figures 4 and 5 show the simulated behavior of the
termediate time regime < 7<Pe, one observes an unex- asymptotic longitudinal and transverse dispersion coeffi-
pected strong growth ob&™ and DE™. The effective and cients versusr? and versus P€, respectively. In the fol-
ensemble quantities converge to a constant asymptotic vallewing, the asymptotic values will be denoted HY,

on the dispersion time scalg, , which is described qualita- =IimeDﬁﬁ(t) and for the transverse coefficient accord-
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FIG. 4. Simulation data fo(a) D;°, (b) DF versusc? for Pe=10°. The dashed line illustrates CC, the solid line second-order
perturbation theory.

ingly. The asymptotic dispersion coefficients are calculatedack to the fact that essential higher-order contributions to

as time averages @{"andD$"over an interval where they the asymptotic dispersion coefficients are neglected

already reached their final values. The error bars given in th£30,29,40,27.

results below are defined as the root mean squared deviations Figures %a) and 5b) illustrate the dependence bf and

from these averages. The simulation results are compared 87 on Pe * for ?=1. For small Pe, the transport is diffu-

the corresponding results from CC and second-order pertusion dominated an®,” andD7 increase with decreasing Pe,

bation theory. i.e., increasingD. For increasing PeP{’, Fig. 5a), de-
Figures 4a) and 4b) show the behavior of th® and creases and assumes a minimum. Then it increases for Pe

DY versuso? for Pe=10°. For smallo? the second-order — . This behavior forD[" reflects the behavior, which we

results and the almost identical results from CC agree welpbserved foD{"{t) in the limiting caseD=0 (Pe==), see
with the simulation data. For increasing, both analytical  Fig- 2b). Second-order perturbation theory and CC underes-
approaches underestimate the simulab§td, Fig. 4a), re- timate the S|mula_1t|o_n d_ata conS|de_:rany for Iargel@_lenum-
markably. Note that for ther? values under consideration, bers, which again indicates the importance of higher-order

CC is almost indistinguishable from the second-order predicgontributions. TheDy, Fig. 5(.b)’ decrease§ monotonice}lly

tion. for increasing P(_a, also r;e]flectmg the behawc_)r observed in the
For the transverse dispersion coefficients, shown ir{gmporgl behavior oDy S(t) for D=0 in Fig. 2a). The

Fig. 4b), one observes a significant discrepancy betvveeﬁ'm“Iat'on data are described well by second-order perturba-

) . . tion theory and considerably overestimated by CC.
the S|mulat|o_n datz_;\ and C(_:_for large”. CC pre_dlcts a The simulation results show the influence of the stream-
transverse dispersion coefficient of macroscopic order o

itud he simulate®” . h I with ﬁne structure for advection-dominated transport, i.e., high
magnitude. The simulate@y, however, agree well with  pecjet numbers. The results for the transverse dispersion co-
the second-order expressions, which are of the order cftficients indicate that CC is inconsistent as a resummation

magnitude of the local dispersion coefficient, i.e., small.scheme for the perturbation series and yields erroneous re-
The erroneous behavior predicted by CC can be traceguits for high Pelet numbers.

10! — . . . 10! g - - -
(@) (b)
10° ¢ ;

107 }
102}

10-3 L

4

10 10

107 102

107 102 10! 10°
1/Pe 1/Pe

FIG. 5. Simulation data fof@) D;", (b) D versus 1/Pe foe?= 1. The dashed line illustrates CC, the solid line second-order perturbation
theory.
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V. SUMMARY found that the perturbation theory and Corrsin’s conjecture

. . . . describe the simulation results adequately for small values of
We investigated the transport behavior of a passive scalar; q y

. ) . - L o< and for large values ob. When the fluctuations of the
in a 2D spatially varying velocity field which is given by the random velocity field increase, however, one observes sig-

linearized solution of the Darcy equation. The log-hydraulicgicant deviations from the behavior predicted by the ana-
conductivity f(x) is modeled as a Gaussian random field.|ytica| approaches. The longitudinal dispersion coefficient is
Consequently, the velocity(x), being a linear functional of  yngerestimated by both approaches. The transverse disper-
f(x), is a 2D Gaussian random field. The statistical propersjon coefficient found in the simulations turned out to be of
ties of thisu(x) are well defined and the statistical topogra- the order of the local dispersion coefficigfie., negligibly

phy is well known[10,38, in contrast to the full solution of smal) in agreement with the second-order perturbation
the Darcy equation. We showed analytically that in any in-theory. This result is completely contrary to Corrsin’s con-
compressible Gaussian random field there is a finite probjecture, which predicts a macroscopic asymptotic value and
ability for closed streamlines, and investigated numericallyindicates the inconsistency of Corrsin’s conjecture for trans-
the influence on the transport behavior. In the extreme caseort in static incompressible random field.

of zero local dispersion, the longitudinal spreading is char- The investigation of transport in a well defined random
acterized by a longitudinal ensemble dispersion coefficienyelocity field sheds some new light on the stochastic model-
which grows linearly with time. These phenomena should bdng approach to transport in heterogeneous flow fields. The
observed in every numerical study that uses the linearizeBresented numerical study allowed for a conclusive compari-
solution of the Darcy flow field for a log-normal hydraulic SON of th_e exact numerical solutions and results from analyti-
conductivity. If this is not the case, these phenomena are lo&@l solution methods to the transport problem, which gave
due to numerical inaccuracies and the simulation parametefgPortant insights into their applicability and limitations.

are not well defined. The results obtained by such simula-

tions are at least questionable. This investigation of transport APPENDIX A: EXPLICIT INTEGRAL EXPRESSIONS

in such a flow field stresses the importance of an accurate FOR THE MACRODISPERSION COEFFICIENTS

numerical description of the streamlines in order to capture IN d=2 SPATIAL DIMENSIONS

the influence on the transport behavior in advection-

dominated transport situations appropriately. We develop explicit integral expressions for the ensemble

In contrast to the linearized solution, the full solution of and effective dispersion coefficients by evaluating the

the Darcy equation does not have closed streamlines. Thut :dimensior:al formulas gxeflin_Rdsz]l fo_r|d=2. For an
the applicability of the simulation method using a Gaussian!SOtropiC velocity spectrunh, =I,="---=I4=I, and an iso-

distributed velocity field to approximate the flow in two- WOPIC and constant local dispersion tendoy,=D+=D, the

dimensional heterogeneous porous media is limited. How€ffective and ensemble dispersion coefficients are given by

ever, most analytical methods to solve the transport problem

use Gaussian random fields. Thus, despite the fact that the Di"{t)=D+ulM (t/7,0), (A1)
used velocity fields need not be realistic for flow in hetero- o
geneous porous media, they allow for a consistent check of Dﬁﬁ(t)z DEt)—ulM;" (t/ 7,2t/ 7p), (A2)

the validity of the perturbation theory and Corrsin’s conjec-

ture. The numerical model used in this study provides nonwhere theMii(T,b) are given by

perturbative solutions to the transport problem combining

long observation times with a large number of disorder real- 3

izations and is therefore suited to validate the consistency of M7 (T,b)= §(1+ 2b)*1’2f

these approaches. 0
The numerical results presented here differ from those of

other authors not only by the high degree of accuracy by %

which the streamlines have been calculated but also by the

times up to which the evolution of the transport parameters is

T™™(2e) (1EAX)
dx§ 8——+—

X4

F{ —x? 4
ex 2(1i)\x))_1 el (A3)

followed in terms of the characteristic dispersion and advec- ™o [—1  (1=ax)
tion time scales. It was possible to study systematically the Mzi(T,b)=(1+2b)*1’2f dx 513
temporal behavior of the ensemble and effective dispersion 0 2X X

coefficients ind=2 spatial dimensions. For small values of 2 .

o2 the simulation data and the expressions derived from per- _exp( —X ) 3(1_)‘)() + i
turbation theory were in good agreement whereas for in- 2(1=Ax) x4 X2
creasingo® we found systematic deviations from the pertur-

bative behavior. Yet, the simulated behavior confirms thewith

guantitative difference between the ensemble and effective

quantity for finite times predicted by second-order perturba- A=2€(1+2b)"12 e=Pel. (A5)

tion theory. Furthermore, we investigated the asymptotic lon-

gitudinal and transverse macroscale dispersion coefficients e resulting integral expressions involve only one integra-
a function of o and the local dispersion coefficieBt We  tion, which can be easily performed numerically.
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APPENDIX B: EXTENDED RUNGE-KUTTA METHOD
ACCORDING TO DRUMMOND et al. [8] f d>S{u()H(x) =2 [I(x)| M (xy),  (C2)
n

In order to solve the equation of motion of a solute par-
ticle in one realization ofi(x) subject to a Gaussian white
noise, we use an extended Runge-Kutta scheme. Accordin
to Drummondet al. [8], anNth-order extended Runge-Kutta f

. | : . . u
scheme is obtained by introducing a sequencé gioints

where 5{u(x)} is the two-dimensional Dira@ distribution
ndf(x) is an arbitrary function. The,, are zeros oli(x),

hich correspond to extrema and saddle points of the stream
nction (x). The Jacobi matrix oti(x) is defined by

(x©@, ... xN)y, wherex©=x andxN)=x+ Ax. The inter- au;(x)

mediate points then are given by Jij(x)= ox (C3)
[ andJ(x)=detJ(x,) is the Jacobi determinant. For the choice
xD=x©4> (auD+ B ), (B1)  f(X)=]I(x)|, expressior(C2) counts the number of extrema

i=1 of (x):

pD=u(x("D)At, (B2) Nexzf d2xS{u(x)}I(x) | ©{I(x)}, (C4)
) =(2D;;At)Y25D, (B3)  where®{J(x)} denotes the Heaviside step function, which
assures that only extrema ¢{x) are counted. The sufficient
wherei=1, ... N, and#\" are a set of independent Gauss- condition for extrema of(x) is the definiteness of the Hesse

ian random variables with unit variance and zero mean. Thénatrix, which corresponds t#(x)>0. The integrand in Eq.
optimal choice of the coefficients;; and 8;; is such as to (B4) is the average number of extrema per unit area:
increase the accuracy of the padtt) to O(At(N*Y72)_ This —

is exactly possible only in the cag¢=2. We use the ex- Nex= S{UO)FICO[O{I00}- (€Y
tended Runge-Kutta scheme of ordér 3 given in Ref[8].  The components of the flow field;(x) and its derivatives

In this case there is a set of coefficients that minimizes th%?uj(x)/&xi are uncorrelated, which can be verified using the

error atO(At*?): incompressibility conditionV-u(x)=0. Thus, u(x) and
J(x) are uncorrelated. Correspondingly, EB5) can be re-
B31= B21= P11, B32= P22 (B4)  written according to
and Nex=S{u(X)}  [I()[O{I(x)}. (Co)
. Since we consider Gaussian random fiel8gj(x)) can be
! 1 2 3 evaluated explicitly as it involves only Gauss integrations.
as;  0.24997509 0.37079131  0.379233 54 One obtains
Bsj 0.81410000 —0.08766369 0.574 06991 o _
ay 0.007 33232 0.66311191 s{u(x)} =mexp{ —2u°Cy;(0)}, (C7)
ayj 0.662 758 81 (BS)
where the element€;;(x) of the autocorrelation matrix of
u(x) are defined by Eq.(11); C,/(x) denotes the
APPENDIX C: EXISTENCE OF CLOSED STREAMLINES 11-coefficient of the inverse correlation matrix. The expres-
IN 2D GAUSSIAN RANDOM FIELDS sionA=0(J(x))|J(x)| is nonzero for the following reasons:

) ) ] ) ) ) The Jacobi determinaid{x) vanishes identically only in the
An incompressible flow field in two dimensions can be tjyial case u(x)=const, as a consequence of the incom-

represented by a stream functigix): pressibility conditionV - u(x)=0. Furthermore, ifJ(x)<0
for all x, then A would vanish because @{J(x)} and the
d24p(X) zeros ofu(x) would correspond to saddle points @€x). In

u( ):( —alzp(x))' (€D this case there would be only saddle points and no extrema.

It can be shown, however, that the number of saddle points
and the number of extrema here are equal. Thus, we con-
clude thatA is nonzero. The average density of extrema of
¥(X) then is given by

The streamlines ofi(x) are given by the isolines of(x)

(e.g., Ref.[43]). In the vicinity of extrema ofiy(x) the

streamlines ofi(x) are closed, whereas in the neighborhood

of saddle points of(x) the streamlines are hyperbolic. In _ 2mA S

the following we show that there is a nonvanishing probabil- nex:mexﬂ— 2u°Cy1(0)}>0. (C9

ity for extreme points of the stream functiof(x) for a

Gaussian random flow field. The probability density for maxima and minima of the
The starting point of this analysis is the following identity stream function of a Gaussian flow field and correspondingly

[44]: for closed streamlines is finite.
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40 y ; - ' y - ' Furthermore, we assume that fex-1, the mobile concen-

30| ] tration distribution can be characterized by the center of

a0 | mass velocityu* which is aligned with the one direction of
the coordinate system and a diagofralacroscopig disper-

10 1 sion tensoD*. Thus, we obtain the following for the first

S of 1 and second moments of the mobile concentration distribution

in one direction:

-10 }

20 t ]

230 + . 1 f d2XX1meb(X): mf‘nlgb: u*t,

40 (D3)

2100 0 100 200 300 400 500 600 700
Xy f A2 f o X) = M2 = (U*t)?+ 2Dt,

FIG. 6. Distribution of 10 000 particles at time=500, which
have been releasedxat 0. The random velocity field is character-

ized by 7,=1d ando?=1; x, andx, are measured in units of the
correlation lengthg.

whereD{ denotes the longitudindimacroscopigdispersion
coefficient of the mobile concentration distribution. With
these assumptions, one derives the following for the apparent
longitudinal dispersion coefficient of the total concentration

APPENDIX D: LINEAR GROWTH distributiong(x,1):
|

OF THE LONGITUDINAL DISPERSION COEFFICIENT

FOR AN INFINITE PECLET NUMBER 1d

Figure 6 illustrates the average distribution of 10000 par- D=3 &[ f deXig(X-t)—( j d*xx,g(xt)
ticles at7=500 for Pe=, transported in the random veloc-

ity field (14) for N=64 modesr,=1d ando?=1. The par- =pD} +p(1—p)u*?, (D4)
ticle distribution separates into a mobile part and a localized
part centered about the injection pointat 0. which describes the linear growth of the longitudinal en-

The long-time behavior of the longitudinal ensemble dis-semple dispersion coefficient observed in Fith)2
persion coefficient of such @verage distribution, as illus-

trated in Fig. 2b), can be derived by considering the follow-
ing phenomenological model motivated by the particle APPENDIX E: STREAMLINES IN 2D DARCY
distribution shown in Fig. 6. For>1, the ensemble aver- FLOW FIELDS

aged distribution can be approximated by Here, we show that the full solution of the Darcy equation

for a scalar hydraulic conductivity field id=2 dimensions
cannot have closed streamlines. Since in a Gaussian random
9,0 =pfioc(X) + (1= p) FnoX,1), (D1)  field there is a finite probability for closed streamlines, it has
to be concluded that the distribution of random Darcy flow
fields cannot be Gaussian ih=2 dimensions.
where fio.(X,t) represents the localized arfg(x,t) the We consider the properties of the stream funciigm) for
mobile concentration. We normaliZg(x) andf,o(X,t) ac-  Darcy flow in the vicinity of zeros ofi(x). From the Darcy

cording to d?x fio(X) = d?X fmes(X,t)=1. The coefficient equation one derives the following for the stream function
p then denotes the fraction of the localized particles andj(x):

correspondingly * p the fraction of the mobile ones. Moti-
vated by Fig. 6, we make the following assumptions for the A(X)+ Vi(x)-VE(x)=0. (E1)
first and second moments of the localized distribution: The

first moment in direction ofu of the localized part of the The conditionV¢(x)=0 for extrema or saddle points of

concentration distribution is zero, since the particles Whicm(x) implies A #(x)=0. For extrema of4(x) the Hesse ma-
are injected into a closed streamlinexat 0 remain trapped iy 'is positive or negative definite. However, sindey(x)

in the vicinity of this point. The second moment of the lo- _ 1 eigenvalues, ,i =1,2, of the Hesse matrix af(X)
calized distribution in direction of the mean velocity is con- ;o ,given by T

stant and given by the typical diameter of the closed stream-
PP\ P02
)\1/2— * \/( ax% + (?Xlﬂxz . (EZ)

lines. This means

(D2) Thus, the Hesse matrix is indefinite and consequently there
are no maxima or minima for the stream functig{x) and
accordingly no closed streamlines.

f d2XX1f|OC(X) = ml(gc): 0,

f d?x3f 6e(X) = m{Z)=const.
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