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Numerical studies of the transport behavior of a passive solute
in a two-dimensional incompressible random flow field
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We study the transport behavior of a passive scalar in a two-dimensional~2D! time-independent Gaussian
random velocity field by efficient and highly accurate numerical simulations. The model under consideration
has been used in order to gain basic understanding of transport processes in incompressible flow through
heterogeneous porous media. The velocity field is derived from the linearized solution of the Darcy equation
with a Gauss-distributed log-hydraulic conductivity. The transport of a passive scalar is studied by a high
precision random-walk method, which allows for a systematic nonperturbative study of the ensemble and
effective dispersion coefficients. The conclusive numerical results validate the range of applicability of the
perturbation theory and the consistency of nonperturbative approaches to the transport problem in a random
medium. Furthermore, we observe closed streamlines in incompressible 2D Gaussian random fields, which
restricts the direct applicability of the simulation method for transport in heterogeneous porous media, and
questions the results of similar studies that do not observe this phenomenon.
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I. INTRODUCTION

The two-dimensional numerical simulations presented
this paper investigate the transport of a passive scalar in
incompressible static random velocity field. The veloc
field, as an approximation to the flow field in a heterog
neous porous medium, is given by the linearized solution
the Darcy equation@1#, which is a linear functional of the
Gauss-distributed log-hydraulic conductivity of the mediu
and, as a consequence, is Gauss distributed, too. This G
ian flow model has been used in order to study basic tra
port properties in heterogeneous porous media@2–7# in two
and three spatial dimensions. The transport behavior o
passive scalar in similar flow models has been investiga
e.g., as a static limiting case in turbulent transport@8–11#,
also as an approximation for solute transport in hetero
neous porous media, and in general for the study of rand
walks in random environments@12–17#. In contrast to the
models investigated in Refs.@8–11,14,15,17#, which assume
a zero mean velocity, for the modeling of transport in a h
erogeneous porous medium as, e.g., a groundwater aq
the mean velocity is necessarily nonzero, which leads t
qualitatively and quantitatively different transport behav
@12#.

As the simplest characteristic of the spatial shape of
concentration distribution, we study the temporal evolut
of the macroscopic dispersion coefficients, which are defi
as averages over all typical realizations of the underly
random field. We distinguish two averaging procedu
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which yield conceptually different dispersion quantities. T
ensemble average over the dispersion coefficient in one r
ization of the random field defines the ‘‘effective’’ dispersio
coefficientDi j

eff(t), which is a measure for the spreading
one typical realization. The ‘‘ensemble’’ dispersion coef
cient Di j

ens(t), derived from the second centered moment
the ensemble averaged concentration distribution, in c
trast, reflects the dispersion properties of the ensemble o
realizations. The conceptual difference between these
quantities has been known in the context of turbulent tra
port @18,19# as well as transport in time-independent rando
fields @20#, and was investigated quantitatively in the fram
work of a second-order perturbation expansion in the fl
tuations of the random fields in Refs.@16,21,22#. There it
was found that the temporal behavior ofDi j

eff(t) is dominated
by the dispersion time scale,tD[ l 2/D, which measures the
typical time for the solute to be spread over a distance of
correlation lengthl of the flow field by local dispersionD.
The ensemble dispersion coefficientDi j

ens(t), in contrast,

evolves on the advection time scale,tu[ l /ū, which repre-
sents the typical time for the solute to be transported o
one correlation length of the random field by the mean d
ū. Both time scales are well separated in realistic situatio
tu!tD @1#. Thus, the largest times reached in the transp
simulations have to be at least of the order of the~large!
dispersion time scale to be able to obtain meaningful res
for the effective dispersion coefficients.

The perturbative approach@13,23,24# to solve the trans-
port problem has proved to be a valuable tool for the a
lytical prediction and description of macroscale transp
properties in heterogeneous media. It is, however, intrin
©2003 The American Physical Society06-1
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cally restricted to situations of moderate heterogeneity. T
efficient numerical simulations presented here are a sys
atic tool to investigate the relevance of higher-order con
butions of the perturbation series to the transport problem
strongly fluctuating random fields. The numerical results
compared to a self-consistent resummation scheme, whic
the literature is referred to as direct interaction approxim
tion @8,10,14#, Corrsin’s conjecture@25–27#, and fastest ap-
parent convergence@28#. In the following we will refer to
this scheme as ‘‘Corrsin’s conjecture’’~CC!. In terms of a
diagrammatic representation of the perturbation ser
Corrsin’s conjecture is a self-consistent one-loop resum
tion scheme, which does not account for cross diagrams
indicated by the studies of Refs.@10,8#, for the case of zero
mean velocity the prediction of CC agrees very well w
Monte Carlo simulations@14#. In the case of a nonzero mea
drift, the situation is different. Ind53 spatial dimensions
the predictions of CC deviate from the results of numeri
random-walk simulations@2# and describe the simulated b
havior only qualitatively, which can be traced back to t
systematic neglection of cross diagrams. In contrast to
second-order perturbation theory, CC predicts ind52 and
d53 a transverse macrodispersion coefficient of ‘‘mac
scopic’’ order of magnitude@i.e., it is finite in the limit of
vanishing~microscopic! local dispersion# @25–27,29# as pre-
dicted by field experiments@1#. In d53, this result is con-
firmed qualitatively by numerical simulations@2#. In d52
there is strong evidence that the transverse dispersion c
ficient is of the order of the~microscopic! local dispersion
@29,30#. The systematic numerical simulations presented
this paper shed some new light on the range of validity of
perturbation series and the consistency of CC ind52 dimen-
sions.

For the 2D numerical studies presented in this paper
use the simulation method described in Ref.@2#. The random
velocity field is generated as a superposition of a large n
ber of randomly chosen harmonic modes@8,10,11#. The flow
field generated in this way is defined continuously in ev
point in space. For the solution of the transport problem,
use the random-walk method as described in Ref.@8#. This
method allows for efficient transport simulations combini
~essential! long observation times with a large number
disorder realizations. Many numerical simulations doc
mented in the literature, which are based on the full~numeri-
cal! or the approximate linearized solution of the Dar
equation, are limited to small observation times of only a f
advection time scales and few disorder realizations@31–34#,
or additionally restricted to zero local dispersion, i.e., pur
advective transport@6,35–37#. These studies cannot giv
conclusive answers to the questions posed above.

In 2D Gaussian random velocity fields one finds clos
streamlines@38#, a phenomenon which was observed in R
@10# in a Gaussian model with zero mean velocity. Clos
streamlines affect the transport behavior dramatically in
case of small or zero local~microscopic! dispersion. For zero
mean drift and zero local dispersion, Ref.@10# observed sub-
diffusion due to particle localization in closed streamline
Here, for a finite mean drift and zero local dispersion,
observe a linear growth of the longitudinal macrodispers
04630
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coefficient. For finite local dispersion, the transport in the
Gaussian random field is normal in the long-time limit f
the correlation function used in this study, which follow
from the work of Ref.@39#, see Ref.@40#. In a flow field,
which solves the 2D Darcy equation for a scalar conductiv
field, there cannot occur closed streamlines. Thus, the si
lation method using 2D Gaussian random fields is of limit
applicability to transport in heterogeneous porous media
fact that has, to our knowledge, not been reported in
literature before. This observation questions the results
similar numerical 2D studies, which do not notice these p
nomena in the limit of small or vanishing local dispersion

II. MODEL

A. Transport

The distributiong(x,t) of passive solute in a static incom
pressible random fieldu(x) is described by a Fokker-Planc
equation:

]

]t
g~x,t !1ū•“g~x,t !2DDg~x,t !

5d~x!d~ t !1u8~x!•“g~x,t !, ~1!

where we divided the stationary random field into its me
value and fluctuations about it,u(x)5ū2u8(x); the overbar
denotes the ensemble average. In the following, we assumū
to be aligned with the one direction of the coordinate syste
ūi5ūd i1. Furthermore, we assume an isotropic, constant
cal dispersion, which is denoted by the coefficientD. The
initial condition is given byg(x,t50)5d(x); as boundary
condition we assume a vanishingg(x,t) at infinity.

Equation~1! can be transformed into an equivalent int
gral equation, which reads in Fourier space as

g̃~k,t !5g̃0~k,t !2 i k•E
k8
E

2`

`

dt8g̃0~k,t2t8!ũ8~k8!

3g̃~k2k8,t2t8!. ~2!

Fourier transformed quantities are denoted by a tilde,
wave vector is denoted byk; the abbreviation*k8•••

[*R2d2k8/(2p)2
¯ . The unperturbed propagator is give

by g̃0(k,t)5Q(t)exp(2Dk2t1iūk1t), with Q(t) the Heavi-
side step function.

The effective and ensemble dispersion coefficients n
can be defined in terms ofg̃(k,t):

Di j
eff~ t !521/2

]

]t

]2

]ki]kj
$ ln g̃~k,t !%uk50 , ~3!

Di j
ens~ t !521/2

]

]t

]2

]ki]kj
ln$g̃~k,t !%uk50 , ~4!

respectively. The conceptual and quantitative difference
tween these two dispersion quantities has been discusse
tensively in Refs.@21,22# in the framework of second-orde
6-2
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NUMERICAL STUDIES OF THE TRANSPORT BEHAVIOR . . . PHYSICAL REVIEW E67, 046306 ~2003!
perturbation theory. By iteration of Eq.~2! one can generate
a perturbation series inũ8(k), which is the basis for their
studies.

By using the translational invariance of the random fie
u(x), one can derive from Eq.~2! the following relation for

the ensemble averaged distributiong̃(k,t) @40#:

g̃~k,t !5g̃0~k,t !2E
k8
E

k9
E

2`

`

dt8E
2`

`

dt9g̃0~k,t8!g̃0~k

2k8,t82t9!•ki$ũi8~k8!ũ j8~k9!g~k2k9,t9!%kj ,

~5!

where we sum over repeated indices. From this represe
tion follows directly that the center of mass velocity

ui
eff~ t ![2 i

]

]t

]

]ki
g̃~k,t !uk505ūd i1 .

The CC now assumes that in Eq.~5! for large times~i! all
direct correlations betweenũ8(k) andg̃(k,t) vanish, and~ii !

g̃(k,t) can be approximated by a Gaussian which is cha
terized by the center of mass velocityū and Dens(t). By
using definition~4!, this yields a system of self-consiste
nonlinear equations@40,2,26,27# for the asymptotic long-
time values of the ensemble dispersion coefficientsDii

`

[ lim
t→`

Dii
ens(t), i 51, . . . ,d. The off-diagonal elements o

the macrodispersion tensor vanish for symmetry reasons.
results of the perturbation theory, presented in Appendix
and CC are compared to random-walk simulations.

The Langevin equation that is associated to the Fokk
Planck equation~1! and describes the motion of one partic
is given by@17,41,42#

d

dt
x~ t !5u„x~ t !…1j~ t !, ~6!

where j(t) represents a two-dimensional Gaussian wh
noise defined bŷ j i(t)&50 and ^j i(t)j j (t8)&52Dd i j d(t
2t8). The angular brackets denote the average over all w
noise realizations.

For advection-dominated transport situations, i.e.,
large Pe´clet numbers Pe5ūl /D@1 (l being a typical hetero-
geneity length scale, which in the following is identified wi
the correlation length of the random field!, the transport-
dominating influence of the spatially heterogeneous fl
field can be captured only by accurate numerical solution
the single-particle path lines@2#. We use the extende
Runge-Kutta method given in Ref.@8# ~‘‘extended’’ because
it accounts also for local dispersion! instead of the common
Euler method which follows from a straightforward time di
cretization of Eq.~6!. The accuracy of the extended Rung
Kutta scheme used here for the calculation of the part
path lines is of the orderDt3/2 whereas the Euler metho
provides an accuracy of orderD t1/2 only. For completeness
we give a short description of the used algorithm in Appe
dix A.
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For the simulations, the number of realizations of the ra
dom fieldu(x) varies between 2000 for the investigation
the asymptotic behavior and 2500 for the temporal behav
the number of white noise realizations varies between
and 150. The time discretizations wereDt50.05 andDt
50.1, where we defined the dimensionless timet5t/tu .

For illustration, we express the definitions~3! and ~4! of
the effective and ensemble dispersion coefficients in term
the particle positionx(t):

Dii
eff~ t !51/2

d

dt
$^xi~ t !xi~ t !&2^xi~ t !&^xi~ t !&%, ~7!

Dii
ens~ t !51/2

d

dt
$^xi~ t !xi~ t !&2^xi~ t !& ^xi~ t !&%. ~8!

Note that the order by which the two ensemble averages
taken is relevant. The angular brackets denote the ave
over the white noisej(t), which generates the local dispe
sion, the overbar stands for the average over the ensemb
all possible realizations of the random flow fieldu(x). In the
following we will employ the notationDL

eff(t)5D11
eff(t) and

DT
eff(t)5Dii

eff(t), i .1, and analogously for the ensemb
quantity.

B. Velocity field

Fluid flow through a heterogeneous porous medium is
scribed by the Darcy equation@43#

u~x!52exp$ f ~x!%“ h~x!, ~9!

whereh(x) is the hydraulic head,f (x) the log-hydraulic con-
ductivity, which is modeled as a translational invaria
Gaussian random field;f (x) is split into its mean value and
fluctuations about it,f (x)5 f̄ 2 f 8(x). The linearized solution
of Eq. ~9! is a linear functional off 8 @1#:

ui~x!5ūd i12ūE
k
exp~2 i k•x!pi~k! f̃ 8~k!, ~10!

where thepi(k)[d1i2k1ki /k2 assure the incompressibilit
of the flow field. The autocorrelation function of the so d
fined velocity field reads in Fourier space as

ũi8~k!ũ j8~k8!5ū2~2p!2d~k1k8!pi~k!pj~k!Cf f~k!,
~11!

where we used the fact that the autocorrelation funct

f̃ 8(k) f̃ 8(k8)5Cf f(k)(2p)2d(k1k8). Here, we choose for
the Cf f(k) a Gauss-shaped function,

Cf f~k!5s2~2p l 2!expS 2
k2l 2

2 D , ~12!

with the correlation lengthl and the variances2. In the
literature, one finds frequently an alternative autocorrelat
model ~e.g., Refs.@12,15,17,10#!:
6-3
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DENTZ et al. PHYSICAL REVIEW E 67, 046306 ~2003!
ũi8~k!uj8~k8!5~2p!2d~k1k8!S d i j 2
kikj

k2 D Cuu~k!,

~13!

with varying Cuu(k).
One realization of the Gaussian random velocity fie

characterized by the autocorrelation function~11! with Eq.
~12! is numerically generated as a superposition of rando
chosen harmonic modes@8,10,11#:

ui~x!5ūd i12sūA2

N(
j 51

N

pi~k( j )!cos~k( j )
•x1w ( j )!.

~14!

The vectorsk( j ) and the phasesw ( j ) are independent random
numbers. Their distributions determine the autocorrelat
function of the resulting random fieldu(x). The wave vec-
tors k( j ) are drawn from a two-dimensional Gaussian dis
bution with vanishing average and variance 1/l 2. The phases
w ( j ) are equally distributed in the interval@0,2p#. Here we
usedN564 and convinced ourselves that a larger numbe
modes does not change the given results.

FIG. 1. Streamlines of a typical realization of the random vel

ity field ~14! for N564 random modes fortu5 l /ū51d and s2

51; x1 andx2 are given in units of the correlation lengthl.
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The so generated random flow field is Gaussian in
limit of an infinite number of random modes,N→`. In d
52 spatial dimensions there is a finite probability for clos
streamlines in Gaussian random flows as is derived in
pendix B and Ref.@40#. This phenomenon has already be
observed by Kraichnan@10#, who investigated the transpo
behavior for the correlation model~13! with Cuu(k)
5s2(2p)d/2l 21dk2exp(2k2l2/2) for D50 andū50. He ob-
served subdiffusive behavior for the ensemble dispersion
efficients owing to the fact that all particles were trapp
within closed streamlines. Here, one observes subdiffus
behavior only forDT

ens(t) as illustrated in Fig. 2~a!. Owing to

the finite drift, ūÞ0, here one sees closed as well as op
streamlines, which is illustrated in Fig. 1. Figure 1 shows
typical realization of the random velocity field~14! for N

564 random modes withtu5 l /ū51d and s251. Thus,
particles can be trapped within closed streamlines and
vected freely along open streamlines. This topological pr
erty leads to a linear growth of the longitudinal dispersi
coefficient with time, which is illustrated in Fig. 2~b!. A phe-
nomenological model that explains this linear growth on
basis of the existence of closed streamlines is presente
Appendix C. Until now this behavior has not been observ
in similar transport simulations, most probably due to n
merical integration error, which mimics a local dispersio
These trapping phenomena are observed in every t
Gaussian flow field, as is shown in Appendix B. Thus, t
results of numerical studies using Eq.~10!, which do not
observe these trapping phenomena in the limiting caseD
50, are questionable.

For DÞ0, the transport behavior is normal in the lon
time limit @39# and DL

ens(t) converges to a finite constan
because the local dispersion causes an exchange of par
between closed and open streamlines

In passing, let us also comment on another subtle p
related to the way the Gaussian random flow field is gen
ated. The velocity field given by Eq.~14! as a superposition
of N randomly chosen harmonic modes is Gaussian only
the limit N→`. For a finite number of random modes,N
,`, the number of closed streamlines vanishes for a cer
~small! variances2. However, this numerical artifact disap
pears in the limit ofN→`.

-

y
FIG. 2. Simulated behavior of~a! DT
ensand~b! DL

ensversus nondimensional timet5t/tu for Pe5`, s251. The data points are given b
(1), the solid line in~a! shows the second-order perturbation theory, the solid line in~b! denotes a linear fit to the data.
6-4
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FIG. 3. Simulated temporal behavior for~a! DL
eff andDL

ensand~b! DT
eff andDT

ens for s251; (3) and (1) denote the respective data fo
Pe5103, (() and (n) for Pe5102. The solid lines are the corresponding expressions from second-order perturbation theory.
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For the full solution of the Darcy equation there exist
closed streamlines as is shown in Appendix D. This obse
tion indicates a limitation of the applicability of the flow
model ~10! to transport in 2D heterogeneous porous me
and makes it inapplicable in the caseD50. Nevertheless
the use of a Gaussian random velocity provides basic ins
into analytical and semianalytical methods to solve for tra
port in a spatially varying velocity field. Note, for exampl
that the behavior ofDT

ens illustrated in Fig. 2~a! contradicts
CC, which predicts ind52 andd53 a finite value for the
asymptotic transverse dispersion. The simulations con
the perturbation theory@29# and an exact result@30# obtained
in the limit D50. Furthermore, it is interesting to note th
second-order perturbation theory describes the simula
data surprisingly well for a relatively ‘‘high’’ variances2.

III. RESULTS

The stochastic approach is meaningful only for tim
large compared to the advection time scaletu @2#. Thus, we
focus on transport timest>tu . The time in the following is
measured in units of the advection time scale,t5t/tu . Thus,
in terms of the nondimensional timet, the intermediate time
regime is given by 1!t!Pe, the long-time regime byt
@Pe because Pe5tD /tu . For small variances the simulatio
results, which are not shown here, confirm the temporal
havior predicted by the second-order perturbation theory
the longitudinal and transverse dispersion coefficients.

Figures 3~a! and 3~b! illustrate the simulated temporal be
havior of the longitudinal and transverse effective and
semble dispersion coefficients fors251 and Pe5102 and
Pe5103 compared to the corresponding second-order per
bation theory results, see Appendix A. The simulated tem
ral behavior ofDL

eff and DL
ens, Fig. 3~a!, is quantitatively

different from the behavior predicted by the perturbati
theory, which underestimates the observed values. In the
termediate time regime 1!t!Pe, one observes an une
pected strong growth ofDL

eff and DL
ens. The effective and

ensemble quantities converge to a constant asymptotic v
on the dispersion time scaletD , which is described qualita
04630
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tively by the perturbation theory. TheDL
ens, however, reaches

its asymptotic long-time value much later than the cor
sponding second-order expressions. The observed temp
evolution of the observables can be explained by the in
ence of the complicated streamline structure, which is m
important for large Pe´clet numbers, i.e., advection-dominate
transport situations. The unexpected strong increase of
dispersion coefficients in the intermediate time regime c
be traced back to trapping phenomena related to the clo
streamlines within the Gaussian velocity field~14!. These
phenomena are not accounted for by lowest-order pertu
tion theory. Closed streamlines define stagnation zon
where particles may be trapped, in contrast to regions of
particle transport along open streamlines. Local dispers
provides an exchange mechanism for particles between t
immobile zones and mobile regions of fast transport. T
smaller the local dispersion coefficient, i.e., the larger
Peclet number, the larger is the mean trapping time for
particles. This effect obviously enhances the longitudinal d
persion, and leads to the strong increase ofDL

eff and DL
ens

observed in Fig. 3~a!.
In Fig. 3~b!, we see the time behavior of the transver

dispersion coefficients. TheDT
ensagree well with the second

order expressions for Pe5102 and Pe5103. TheDT
eff in con-

trast is underestimated by the perturbation theory in the
termediate time regime, 1!t!Pe. For long times,DT

eff and
DT

ens converge to the same asymptotic value, which is of
order of the local dispersion coefficient in contrast tod53,
for which a macroscopic disorder-induced contribution w
found @2#. The simulated long-time behavior confirms th
second-order perturbation theory, which predicts that ther
no macroscopic contribution to the asymptotic long-tim
value of the transverse dispersion coefficient. It is a rema
able fact that the temporal behavior of the ensemble dis
sion coefficient is well described by the second-order per
bation theory expression even for a relatively larges2.

Figures 4 and 5 show the simulated behavior of
asymptotic longitudinal and transverse dispersion coe
cients versuss2 and versus Pe21, respectively. In the fol-
lowing, the asymptotic values will be denoted byDL

`

5 lim
t→`

DL
eff(t) and for the transverse coefficient accor
6-5
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FIG. 4. Simulation data for~a! DL
` , ~b! DT

` versuss2 for Pe5103. The dashed line illustrates CC, the solid line second-or
perturbation theory.
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re-
ingly. The asymptotic dispersion coefficients are calcula
as time averages ofDL

ensandDT
ensover an interval where they

already reached their final values. The error bars given in
results below are defined as the root mean squared devia
from these averages. The simulation results are compare
the corresponding results from CC and second-order pe
bation theory.

Figures 4~a! and 4~b! show the behavior of theDL
` and

DT
` versuss2 for Pe5103. For smalls2 the second-orde

results and the almost identical results from CC agree w
with the simulation data. For increasings2, both analytical
approaches underestimate the simulatedDL

` , Fig. 4~a!, re-
markably. Note that for thes2 values under consideration
CC is almost indistinguishable from the second-order pre
tion.

For the transverse dispersion coefficients, shown
Fig. 4~b!, one observes a significant discrepancy betw
the simulation data and CC for larges2. CC predicts a
transverse dispersion coefficient of macroscopic order
magnitude. The simulatedDT

` , however, agree well with
the second-order expressions, which are of the orde
magnitude of the local dispersion coefficient, i.e., sm
The erroneous behavior predicted by CC can be tra
04630
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back to the fact that essential higher-order contributions
the asymptotic dispersion coefficients are neglec
@30,29,40,27#.

Figures 5~a! and 5~b! illustrate the dependence ofDL
` and

DT
` on Pe21 for s251. For small Pe, the transport is diffu

sion dominated andDL
` andDT

` increase with decreasing Pe
i.e., increasingD. For increasing Pe,DL

` , Fig. 5~a!, de-
creases and assumes a minimum. Then it increases fo
→`. This behavior forDL

` reflects the behavior, which we
observed forDL

ens(t) in the limiting caseD50 (Pe5`), see
Fig. 2~b!. Second-order perturbation theory and CC under
timate the simulation data considerably for large Pe´clet num-
bers, which again indicates the importance of higher-or
contributions. TheDT

` , Fig. 5~b!, decreases monotonicall
for increasing Pe, also reflecting the behavior observed in
temporal behavior ofDT

ens(t) for D50 in Fig. 2~a!. The
simulation data are described well by second-order pertu
tion theory and considerably overestimated by CC.

The simulation results show the influence of the strea
line structure for advection-dominated transport, i.e., h
Peclet numbers. The results for the transverse dispersion
efficients indicate that CC is inconsistent as a resumma
scheme for the perturbation series and yields erroneous
sults for high Pe´clet numbers.
tion
FIG. 5. Simulation data for~a! DL
` , ~b! DT

` versus 1/Pe fors251. The dashed line illustrates CC, the solid line second-order perturba
theory.
6-6
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IV. SUMMARY

We investigated the transport behavior of a passive sc
in a 2D spatially varying velocity field which is given by th
linearized solution of the Darcy equation. The log-hydrau
conductivity f (x) is modeled as a Gaussian random fie
Consequently, the velocityu(x), being a linear functional of
f (x), is a 2D Gaussian random field. The statistical prop
ties of thisu(x) are well defined and the statistical topogr
phy is well known@10,38#, in contrast to the full solution of
the Darcy equation. We showed analytically that in any
compressible Gaussian random field there is a finite pr
ability for closed streamlines, and investigated numerica
the influence on the transport behavior. In the extreme c
of zero local dispersion, the longitudinal spreading is ch
acterized by a longitudinal ensemble dispersion coeffic
which grows linearly with time. These phenomena should
observed in every numerical study that uses the linear
solution of the Darcy flow field for a log-normal hydraul
conductivity. If this is not the case, these phenomena are
due to numerical inaccuracies and the simulation parame
are not well defined. The results obtained by such simu
tions are at least questionable. This investigation of trans
in such a flow field stresses the importance of an accu
numerical description of the streamlines in order to capt
the influence on the transport behavior in advectio
dominated transport situations appropriately.

In contrast to the linearized solution, the full solution
the Darcy equation does not have closed streamlines. T
the applicability of the simulation method using a Gaussi
distributed velocity field to approximate the flow in two
dimensional heterogeneous porous media is limited. H
ever, most analytical methods to solve the transport prob
use Gaussian random fields. Thus, despite the fact tha
used velocity fields need not be realistic for flow in hete
geneous porous media, they allow for a consistent chec
the validity of the perturbation theory and Corrsin’s conje
ture. The numerical model used in this study provides n
perturbative solutions to the transport problem combin
long observation times with a large number of disorder re
izations and is therefore suited to validate the consistenc
these approaches.

The numerical results presented here differ from those
other authors not only by the high degree of accuracy
which the streamlines have been calculated but also by
times up to which the evolution of the transport parameter
followed in terms of the characteristic dispersion and adv
tion time scales. It was possible to study systematically
temporal behavior of the ensemble and effective dispers
coefficients ind52 spatial dimensions. For small values
s2 the simulation data and the expressions derived from
turbation theory were in good agreement whereas for
creasings2 we found systematic deviations from the pertu
bative behavior. Yet, the simulated behavior confirms
quantitative difference between the ensemble and effec
quantity for finite times predicted by second-order pertur
tion theory. Furthermore, we investigated the asymptotic l
gitudinal and transverse macroscale dispersion coefficien
a function ofs2 and the local dispersion coefficientD. We
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found that the perturbation theory and Corrsin’s conject
describe the simulation results adequately for small value
s2 and for large values ofD. When the fluctuations of the
random velocity field increase, however, one observes
nificant deviations from the behavior predicted by the a
lytical approaches. The longitudinal dispersion coefficien
underestimated by both approaches. The transverse di
sion coefficient found in the simulations turned out to be
the order of the local dispersion coefficient~i.e., negligibly
small! in agreement with the second-order perturbat
theory. This result is completely contrary to Corrsin’s co
jecture, which predicts a macroscopic asymptotic value
indicates the inconsistency of Corrsin’s conjecture for tra
port in static incompressible random field.

The investigation of transport in a well defined rando
velocity field sheds some new light on the stochastic mod
ing approach to transport in heterogeneous flow fields. T
presented numerical study allowed for a conclusive comp
son of the exact numerical solutions and results from ana
cal solution methods to the transport problem, which ga
important insights into their applicability and limitations.

APPENDIX A: EXPLICIT INTEGRAL EXPRESSIONS
FOR THE MACRODISPERSION COEFFICIENTS

IN dÄ2 SPATIAL DIMENSIONS

We develop explicit integral expressions for the ensem
and effective dispersion coefficients by evaluating t
d-dimensional formulas given in Ref.@22# for d52. For an
isotropic velocity spectruml 15 l 25•••5 l d[ l , and an iso-
tropic and constant local dispersion tensor,DL5DT[D, the
effective and ensemble dispersion coefficients are given

Dii
ens~ t !5D1ūlM i

2~ t/tu,0!, ~A1!

Dii
eff~ t !5Dii

ens~ t !2ūlM i
1~ t/tu,2t/tD!, ~A2!

where theMi
6(T,b) are given by

M1
6~T,b!5

3

8
~112b!21/2E

0

Tl/~2e!

dxH 8
~16l x!

x4

3FexpS 2x2

2~16l x! D21G1
4

x2J , ~A3!

M2
6~T,b!5~112b!21/2E

0

Tl/~2e!

dxF21

2x2
13

~16lx!

x4

2expS 2x2

2~16lx! D S 3
~16lx!

x4
1

1

x2D G , ~A4!

with

l52e~112 b!21/2, e5Pe21. ~A5!

The resulting integral expressions involve only one integ
tion, which can be easily performed numerically.
6-7
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APPENDIX B: EXTENDED RUNGE-KUTTA METHOD
ACCORDING TO DRUMMOND et al. †8‡

In order to solve the equation of motion of a solute p
ticle in one realization ofu(x) subject to a Gaussian whit
noise, we use an extended Runge-Kutta scheme. Accor
to Drummondet al. @8#, anNth-order extended Runge-Kutt
scheme is obtained by introducing a sequence ofN points
(x(0), . . . ,x(N)), wherex(0)5x andx(N)5x1Dx. The inter-
mediate points then are given by

x( i )5x(0)1(
j 51

i

~a i j m
( j )1b i j e

( j )!, ~B1!

m( i )5u~x( i 21)!Dt, ~B2!

e( i )5~2Dii Dt !1/2h( i ), ~B3!

wherei 51, . . . ,N, andh( i ) are a set of independent Gaus
ian random variables with unit variance and zero mean.
optimal choice of the coefficientsa i j and b i j is such as to
increase the accuracy of the pathx(t) to O(Dt (N11)/2). This
is exactly possible only in the caseN52. We use the ex-
tended Runge-Kutta scheme of orderN53 given in Ref.@8#.
In this case there is a set of coefficients that minimizes
error atO(Dt3/2):

b315b215b11, b325b22 ~B4!

and

j 1 2 3

a3 j 0.249 975 09 0.370 791 31 0.379 233 5
b3 j 0.814 100 00 20.087 663 69 0.574 069 9
a2 j 0.007 332 32 0.663 111 91
a1 j 0.662 758 81 ~B5!

APPENDIX C: EXISTENCE OF CLOSED STREAMLINES
IN 2D GAUSSIAN RANDOM FIELDS

An incompressible flow field in two dimensions can
represented by a stream functionc(x):

u~x!5S ]2c~x!

2]1c~x!
D . ~C1!

The streamlines ofu(x) are given by the isolines ofc(x)
~e.g., Ref. @43#!. In the vicinity of extrema ofc(x) the
streamlines ofu(x) are closed, whereas in the neighborho
of saddle points ofc(x) the streamlines are hyperbolic. I
the following we show that there is a nonvanishing proba
ity for extreme points of the stream functionc(x) for a
Gaussian random flow field.

The starting point of this analysis is the following identi
@44#:
04630
-

ng

e

e

-

E d2xd$u~x!% f ~x!5(
n

uJ~xn!u21f ~xn!, ~C2!

whered$u(x)% is the two-dimensional Diracd distribution
and f (x) is an arbitrary function. Thexn are zeros ofu(x),
which correspond to extrema and saddle points of the str
function c(x). The Jacobi matrix ofu(x) is defined by

Ji j ~x![
]uj~x!

]xi
, ~C3!

andJ(x)[detJ(xn) is the Jacobi determinant. For the choi
f (x)[uJ(x)u, expression~C2! counts the number of extrem
of c(x):

Nex5E d2xd$u~x!%uJ~x!uQ$J~x!%, ~C4!

whereQ$J(x)% denotes the Heaviside step function, whi
assures that only extrema ofc(x) are counted. The sufficien
condition for extrema ofc(x) is the definiteness of the Hess
matrix, which corresponds toJ(x).0. The integrand in Eq.
~B4! is the average number of extrema per unit area:

n̄ex5d$u~x!%uJ~x!uQ$J~x!%. ~C5!

The components of the flow fieldui(x) and its derivatives
]uj (x)/]xi are uncorrelated, which can be verified using t
incompressibility condition“•u(x)50. Thus, u(x) and
J(x) are uncorrelated. Correspondingly, Eq.~B5! can be re-
written according to

n̄ex5d$u~x!% uJ~x!uQ$J~x!%. ~C6!

Since we consider Gaussian random fields,d„u(x)… can be
evaluated explicitly as it involves only Gauss integration
One obtains

d$u~x!%5
2p

detC~0!
exp$22ū2C11

21~0!%, ~C7!

where the elementsCi j (x) of the autocorrelation matrix o
u(x) are defined by Eq. ~11!; C11

21(x) denotes the
11-coefficient of the inverse correlation matrix. The expre
sionA[Q„J(x)…uJ(x)u is nonzero for the following reasons
The Jacobi determinantJ(x) vanishes identically only in the
trivial case u(x)5const, as a consequence of the inco
pressibility condition“•u(x)50. Furthermore, ifJ(x),0
for all x, thenA would vanish because ofQ$J(x)% and the
zeros ofu(x) would correspond to saddle points ofc(x). In
this case there would be only saddle points and no extre
It can be shown, however, that the number of saddle po
and the number of extrema here are equal. Thus, we c
clude thatA is nonzero. The average density of extrema
c(x) then is given by

n̄ex5
2pA

detC~0!
exp$22ū2C11

21~0!%.0. ~C8!

The probability density for maxima and minima of th
stream function of a Gaussian flow field and correspondin
for closed streamlines is finite.
6-8
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APPENDIX D: LINEAR GROWTH
OF THE LONGITUDINAL DISPERSION COEFFICIENT

FOR AN INFINITE PECLET NUMBER

Figure 6 illustrates the average distribution of 10 000 p
ticles att5500 for Pe5`, transported in the random veloc
ity field ~14! for N564 modestu51 d ands251. The par-
ticle distribution separates into a mobile part and a locali
part centered about the injection point atx50.

The long-time behavior of the longitudinal ensemble d
persion coefficient of such a~average! distribution, as illus-
trated in Fig. 2~b!, can be derived by considering the follow
ing phenomenological model motivated by the parti
distribution shown in Fig. 6. Fort@1, the ensemble aver
aged distribution can be approximated by

g~x,t !5r f loc~x!1~12r! f mob~x,t !, ~D1!

where f loc(x,t) represents the localized andf mob(x,t) the
mobile concentration. We normalizef loc(x) and f mob(x,t) ac-
cording to*d2x f loc(x)5*d2x fmob(x,t)51. The coefficient
r then denotes the fraction of the localized particles a
correspondingly 12r the fraction of the mobile ones. Moti
vated by Fig. 6, we make the following assumptions for
first and second moments of the localized distribution: T
first moment in direction ofū of the localized part of the
concentration distribution is zero, since the particles wh
are injected into a closed streamline atx50 remain trapped
in the vicinity of this point. The second moment of the l
calized distribution in direction of the mean velocity is co
stant and given by the typical diameter of the closed stre
lines. This means

E d2xx1f loc~x!5mloc
(1)50,

~D2!

E d2xx1
2f loc~x!5mloc

(2)5const.

FIG. 6. Distribution of 10 000 particles at timet5500, which
have been released atx50. The random velocity field is characte
ized bytu51 d ands251; x1 andx2 are measured in units of th
correlation lengthsl.
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Furthermore, we assume that fort@1, the mobile concen-
tration distribution can be characterized by the center
mass velocityu* which is aligned with the one direction o
the coordinate system and a diagonal~macroscopic! disper-
sion tensorD* . Thus, we obtain the following for the firs
and second moments of the mobile concentration distribu
in one direction:

E d2xx1f mob~x!5mmob
(1) 5u* t,

~D3!

E d2xx1
2f mob~x!5mmob

(2) 5~u* t !212DL* t,

whereDL* denotes the longitudinal~macroscopic! dispersion
coefficient of the mobile concentration distribution. Wi
these assumptions, one derives the following for the appa
longitudinal dispersion coefficient of the total concentrati
distributiong(x,t):

DL
ens~ t !5

1

2

d

dt H E d2xx1
2g~x,t !2S E d2xx1g~x,t ! D 2J

5rDL* 1r~12r!u* 2t, ~D4!

which describes the linear growth of the longitudinal e
semble dispersion coefficient observed in Fig. 2~b!.

APPENDIX E: STREAMLINES IN 2D DARCY
FLOW FIELDS

Here, we show that the full solution of the Darcy equati
for a scalar hydraulic conductivity field ind52 dimensions
cannot have closed streamlines. Since in a Gaussian ran
field there is a finite probability for closed streamlines, it h
to be concluded that the distribution of random Darcy flo
fields cannot be Gaussian ind52 dimensions.

We consider the properties of the stream functionc(x) for
Darcy flow in the vicinity of zeros ofu(x). From the Darcy
equation one derives the following for the stream functi
c(x):

Dc~x!1“c~x!•“ f ~x!50. ~E1!

The condition“c(x)50 for extrema or saddle points o
u(x) impliesDc(x)50. For extrema ofc(x) the Hesse ma-
trix is positive or negative definite. However, sinceDc(x)
50, the eigenvaluesl i ,i 51,2, of the Hesse matrix ofc(x)
are given by

l1/256AS ]2c~x!

]x1
2 D 2

1S ]2c~x!

]x1]x2
D 2

. ~E2!

Thus, the Hesse matrix is indefinite and consequently th
are no maxima or minima for the stream functionc(x) and
accordingly no closed streamlines.
6-9
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